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Abstract

Since radial positive definite functions onRd remain positive definite when restricted to the sphere, it
is natural to ask for properties of the zonal series expansion of such functions which relate to properties
of the Fourier–Bessel transform of the radial function. We show that the decay of the Gegenbauer
coefficients is determined by the behavior of the Fourier–Bessel transform at the origin.
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MSC:42C10; 42A82; 33C10; 33C45

Keywords:Radial basis functions; Zonal basis functions; Positive definite functions; Conditionally positive
definite functions; Bessel functions; Gegenbauer polynomials; Kriging

1. Introduction

Approximating functions by linear combinations of translates of a single basis func-
tion is a widely used method in several branches of mathematics. Methods of this kind
are radial basis function methodsin approximation theory andkriging methodsin mul-
tivariate statistics. There is a large literature on the subject in both areas of mathematics
(cf. [3,19], and the references therein). Given a function� : R+ → R and dataX =
{(x1, f1), . . . , (xN, fN)} ⊂ Rd × R, the basic idea of radial basis function interpolation is
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to assume the valuesf1, . . . , fN to be point evaluations of an unknown functionf : Rd →
R, and to recoverf from a linear combination of the type

sf,X(y) =
N∑

j=1

aj�(|y − xj |), y ∈ Rd .

Since thebasis function�(| · |) depends on the norm of the argument only, it is called
radial. A natural class of suitable basis functions is the class ofpositive definite radial
functions. These are continuous functions� : Rd → R, such that for all finite sets of points
x1, . . . , xn ∈ Rd and arbitrary coefficientsc1, . . . , cn ∈ C the inequality

n∑
j=1

n∑
k=1

cj ck�(|xj − xk|) � 0 (1.1)

holds true. Note that the common definition of positive definite functions does in general not
include continuity of the function. But in the context of radial basis function interpolation
this is a reasonable assumption.

There is an analogous concept for radial basis functions on the unit sphereSd−1 in Rd .
We then assume the basis function� to depend on the geodesic distance of two points on
the sphere, only, and define positive definiteness in an analog manner. One can show (cf.
[18, (1.3)]) that these functions can be represented as azonal series,

�(�, �) =
∞∑
n=0

dn

cn,d∑
k=1

Sn,k(�)Sn,k(�), �, � ∈ Sd−1, (1.2)

where{Sn,k : 1�k�cn,d} denotes a basis of the space of spherical harmonics (cf. (2.11),
below).

Many results for radial basis functions onRd have their counterparts on the sphere (cf.
for example [7]). One difficulty with the so-calledzonal basis functionapproach is to find
suitable basis functions on the sphere. Since the restriction of a positive definite function
onRd to the sphere is positive definite onSd−1, it is natural to ask which properties of the
radial basis functions can be naturally transferred to the sphere.

Comparing Fourier transform and zonal series expansion for several examples of known
basis functions (see e.g., [11]). Levesley and Hubbert [12] came up with the following
conjecture.

Conjecture A. Let� be radial onRd such that for somek ∈ N the function(−1)k�(k) is
completely monotone on(0,∞). Let further the generalized Fourier transform of� have
polynomial decay,i.e.,

�̂(t) = O(t−d−�)
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for some� > 0,and

�(�, �) =
∞∑
n=0

dn

cn,d∑
k=1

Sn,k(�)Sn,k(�), �, � ∈ Sd−1,

denotes the zonal series expansion of the restriction of� to the sphere,i.e.,

�(�, �) = �
(√

2 − 2�t�
)

, �, � ∈ Sd−1.

Then the Fourier coefficients{dn} have an analog decay rate. To be precise,

dn = O(n−d−�+1), asn → ∞.

The aim of the present paper is to analyze the conjecture in some detail and to give a proof
of a clarified version of it. The basic idea is to use properties of the underlying systems of
special functions to bridge the gap between the Fourier transform�̂ and the zonal series
coefficientsdn.

To keep the paper self-contained, we summarize the important definitions and properties
in the next paragraph and discuss several aspects of the conjecture. At the end we will put
the conjecture into a form which can be proved. We will give the proof for the special case
that � is positive definite in Section 3. Section 4 then deals with the general case. The
last section finally gives some remarks on the underlying concepts, trying to provide some
understanding of the concept of smoothness and radial/zonal functions.

2. Prerequisites

Before analyzing the conjecture let us collect some basic facts on Fourier transforms and
special functions. ByS(Rd) we denote the Schwarz space onRd , i.e., the space of functions
� ∈ C∞(Rd) with supx∈Rd |xm�n�(x)| < ∞ for all n,m ∈ Nd

0. A function� ∈ L1
loc(R

d)

is called of polynomial growth if there is an� ∈ N0 such that|�(x)| = O(|x|�) for |x| → ∞.
Such functions can be considered as generalized functions onS(Rd) in the usual way. The
generalized Fourier transformfor such functions is then defined as∫

Rd
�̂(x)�(x) dx =

∫
Rd

�(x)�̂(x) dx (2.1)

for all � ∈ S(Rd).
Recall, theBessel functionof the first kind and of order� > −1

2 is defined by its power
series

J�(z) = 1

�(� + 1)

( z
2

)� ∞∑
k=0

(−1)k

k!�(� + k + 1)

( z
2

)2k
, z ∈ C. (2.2)
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Since it is sometimes more convenient, let us also introduce a second commonly used
notation:

J�(z) = �(� + 1)
( z

2

)−�
J�(z), z ∈ C.

The Fourier–Bessel transform of a radial function onRd is defined as (cf.[17])

�̂0(t) = k	

∫ ∞

0
�0(r)J	(rt)r

2	+1 dr, t ∈ R+, (2.3)

wherek	 = (2	�(	+1))−1. Here and for the rest of the paper	 denotes the fixed parameter

	 = d−2
2 . The constantk	 is chosen such that the transform is self-inverse, i.e.,̂̂�0(r) =

�0(r), for suitable functions�0. The function�0 thereby denotes the radial function�
considered as a function on the positive real line.

In case of a radial function� Eq. (2.1) reads

k	

∫ ∞

0
�̂0(r)�(r)r2	+1 dr = k	

∫ ∞

0
�0(r)�̂(r)r2	+1 dr (2.4)

for all � ∈ S(R+).
Let � ∈ L1

loc(R
d) be a function of polynomial growth. Then� is ageneralized positive

definite functiononS(Rd) if and only if it can be represented as∫
Rd

�(x)�(x) dx =
∫

Rd
�̂(x) d
(x), (2.5)

where
 is a positive tempered measure, i.e., a positive measure which additionally satisfies∫
Rd

(1 + |x|2)−p d
(x) < ∞

for somep�0 (see, e.g.,[8]). Using (2.5) and the Fourier–Bessel transform (2.3), we obtain
the following representation for a radial positive definite function:

�0(r) = k	

∫ ∞

0
J	(rt)t

2	+1 d
(t), r ∈ R+, (2.6)

where
 is a positive tempered measure onR+. Since we are dealing with radial functions
only, we will identify the radial functions onRd with their counterparts onR+, thus, skipping
the subscript. Likewise, the notation̂� has to be interpreted accordingly.

Let us finally recall some important facts about Gegenbauer polynomials and their con-
nection to Bessel functions. TheGegenbauer polynomialsof degreen ∈ N with parameter
� > 0 can be defined using their generating function

(1 − 2r cos� + r2)−� =
∞∑
n=0

rnC�
n(cos�), � ∈ [0,�]. (2.7)
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Gegenbauer polynomials are orthogonal on the interval[0,�] with respect to the measure
sin2� � d� and are normalized such that

|C�
n(cos�)| � C�

n(1) = (2�)n
n! , � ∈ [0,�]. (2.8)

There is an important connection between Gegenbauer polynomials and Bessel functions
of order� > −1

2, known asGegenbauer’s addition theoremfor Bessel functions:

J�(c)

c� = 2��(�)
∞∑
n=0

(� + n)
J�+n(a)

a�

J�+n(b)

b� C�
n(cos�), (2.9)

wherea, b, c are the lengths of the sides of a triangle, and� is the angle between the sides
of lengtha andb, respectively.

In [18] Schoenberg proved that a functionf on Sd−1 is positive definite if and only iff
has a Gegenbauer expansion

f (�t�) =
∞∑
n=0

anC
	
n(cos�), �, � ∈ Sd−1, (2.10)

with non-negative coefficientsan ∈ R, n ∈ N0, and� = arccos�t�.
To explain the connection between Gegenbauer polynomials and functions on the sphere,

we have to introduce spherical harmonics. For further details on spherical harmonics the
reader is referred to the monograph[15].

The spaceC(Sd−1) of real-valued continuous functions on the sphere inRd can be
decomposed into the direct sum of spaces of harmonic polynomials on the sphere ind
variables, i.e.,

C(Sd−1) =
∞⊕
n=0

Hn
d .

There is an inner product onC(Sd−1) given by

(f, g) =
∫

|�|=1
f (�)g(�) d
(�),

whered
(�) denotes the surface measure on the surface of the unit sphere and


d =
∫

|�|=1
d
(�) = 2�

d
2 �
(
d

2

)
its total area.

The spaceHn
d of spherical harmonics of degree nin d variables has dimension

cn,d =
(
n + d − 2

n

)
+
(
n + d − 3

n − 1

)
= (2n + d − 2)

(n + d − 3)!
n!(d − 2)!

and there can be chosen an orthogonal basisSn,j , j = 1, . . . , cn,d , in Hn
d such that

(Sn,j , Sk,l) = �nk�j l . (2.11)



70 W. zu Castell, F. Filbir / Journal of Approximation Theory 134 (2005) 65–79

Given such an orthogonal basis the basis elements satisfy anaddition formula

cn,d∑
j=1

Sn,j (�)Sn,j (�) = cn,d


d

C	
n(�

t�)

C	
n(1)

. (2.12)

Letting d tend to 2 this formula reduces to the classical addition formula for the cosine
function.

The addition formula is a fundamental relation in the context of functions on the sphere,
since it allows to representzonal functions, i.e., functions depending on�t�, �, � ∈ Sd−1,
only, in terms of Gegenbauer expansions. There is a group theoretic explanation for the
connection between spherical harmonics and Gegenbauer polynomials (cf.[10] for details).
We do not want to unfold the theory in the context of this paper, but let us briefly mention
that from the group theory point of view Gegenbauer expansions are a natural tool to deal
with zonal functions on the sphere.

To relate radial functions onRd with zonal functions onSd−1, recall that thegeodesic
distanceof two points onSd−1 is defined asd(�, �) = arccos�t�, �, � ∈ Sd−1. The
Euclidean distance between� and� then is|� − �| =

√
2 − 2�t�. Thus, if� is positive

definite and radial onRd ,

�(�, �) = �
(√

2 − 2�t�
)

, �, � ∈ Sd−1,

is positive definite and zonal onSd−1.
To discuss the aforementioned conjecture in detail, let us first broaden the concept of

positive definite functions to enlarge the class of suitable basis functions. A radial function
� : Rd → R is said to beconditionally positive definite of order k, if the sum (1.1) is
non-negative for all finite sets of pointsx1, . . . , xn in Rd and all coefficientsc1, . . . , cn
satisfying

n∑
j=1

cjp(xj ) = 0

for all polynomialsp on Rd of degree less thank. Clearly, positive definite functions are
conditionally positive definite of order 0. Micchelli[14] gave a sufficient condition to ensure
that a function is conditionally positive definite on all spacesRd , d�1, which later has been
shown to be necessary by Guo et al. [9]. For fixedd�1 characterizations of conditionally
positive definite functions can be found, for example, in the book of Gel’fand and Vilenkin
[8, Chapter II].

To state Micchelli’s condition, we need the following definition. A continuous function
� on [0,∞) is said to becompletely monotoneon (0,∞), if f ∈ C∞(0,∞) and for all
m ∈ N0 we have(−1)mf (m)(t)�0, for all t ∈ (0,∞).

Theorem B. Let � be continuous on[0,∞) and (−1)k�(k) be completely monotone on
(0,∞). Then� is radial and conditionally positive definite of order k on all spacesRd ,
d�1.
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Using Theorem B, we can conclude that Levesley and Hubbert obviously had condition-
ally positive definite functions in mind when they formulated their conjecture. We can thus
alter its formulation by assuming that the function� is conditionally positive definite onRd

for all d�1. We will use a representation of conditionally positive definite functions onRd

for fixed dimensiond. Therefore, we state the conjecture for the larger class of conditionally
positive definite radial functions for fixed dimension.

The formulation of the conjecture in[12] assumes the function̂� to have polynomial
decay which usually has to be understood as a condition on the decay of the function as the
argument tends to∞. But, as we will show below, the behavior of the Fourier transform
�̂ for large arguments does not influence the decay of the coefficientsdn asn → ∞. At
a first glance, this seems to be surprising. From the heuristic argument that smoothness
of the function� corresponds to decay of its Fourier transform for large arguments, one
might conclude that since� and� could in some way be identified, we should expect a
certain decay of the Fourier transform of�, i.e., its zonal series expansion, given a smooth
function�.

In a certain way this argument is correct, although it is a priori not clear in what sense
smoothness of the function� has to be understood. But due to the restriction to the sphere,
� and � coincide on the interval[0, 1], only. On the other hand, any inference on the
smoothness of� out of its Fourier transform is of global nature, i.e., takes the whole
positive real axis into account. Since we can scale the sphere by an arbitrary factorε > 0,
the only region where we can expect any influence of the behavior of�̂ on the decay of
the coefficientsdn, is close to the origin. Thus, we have to further modify the conjecture,
assuming a certain behavior of the function�̂ close to the origin.

Dealing with generalized functions and their Fourier transforms indeed allows a

singularity of�̂ at the origin. Crum [4], for example, showed that the Fourier transform of
a measurable positive definite radial function is continuous on(0,∞) and can at most have
a singularity at the end points.

Summarizing the above arguments, we end up with the following clarified version of the
conjecture:

Conjecture C. Let� be conditionally positive definite of order k,k ∈ N0, and radial on
Rd . Assume further that the generalized Fourier transform of� exists and satisfies

�̂(t) = O(t−2k−�), as t → 0

for some� > 0. If

�(�, �) =
∞∑
n=0

dn

cn,d∑
k=1

Sn,k(�)Sn,k(�), �, � ∈ Sd−1,

denotes the zonal series expansion of the restriction of� to the sphere,i.e.,

�(�, �) = �
(√

2 − 2�t�
)

, �, � ∈ Sd−1,
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then the Fourier coefficients{dn}n∈N0 have an analog decay rate. To be precise,

dn = O
(
n−2k−�+1

)
, asn → ∞.

We will prove the casek = 0 first, i.e., for positive definite functions�. The general case
then follows in Section 4.

3. Gegenbauer expansion of a radial function

Since forx, y ∈ Rd , a = |x|, b = |y|, andc = |x − y| form a triangle we can use
the addition theorem (2.9) to obtain a Gegenbauer expansion for the kernel of the inverse
Fourier–Bessel transform.

Let� be a function onR+ such that its inverse Fourier–Bessel transform exists. Following
(2.3) we can write

�(c) = c−	
∫ ∞

0
J	(ct)�̂(t)t	+1 dt

= 2	�(	)
∞∑
n=0

(
	 + n

)
C	

n

(
xty
ab

) ∫ ∞

0

J	+n(at)

(at)	

J	+n(bt)

(bt)	
�̂(t)t2	+1 dt.

Denoting the integral

I
(a,b)
d,n (�̂) =

∫ ∞

0

J	+n(at)

(at)	

J	+n(bt)

(bt)	
�̂(t)t2	+1 dt

andId,n(�̂) = I
(1,1)
d,n (�̂), we finally have

�(c) = 2	�(	)
∞∑
n=0

(	 + n)I
(a,b)
d,n (�̂)C	

n(cos�), (3.1)

whereab cos� = xty for x, y ∈ Rd .
If |x| = |y| = 1 we have |x− y| = √

2 − 2 cos�. Restricting the function�(x, y) =
�(|x − y|) to Sd−1 × Sd−1 we, therefore, have a zonal function�(�, �) = �(

√
2 − 2�t�),

for �, � ∈ Sd−1. According to (1.2) and (2.12) we obtain

�(�, �) =
∞∑
n=0

dn

cn,k∑
k=1

Sn,k(�)Sn,k(�)

=
∞∑
n=0

dncn,d


d

C	
n(cos�)

C	
n(1)

= �(	)

2�	+1

∞∑
n=0

(n + 	)dnC
	
n(cos�). (3.2)

Since�(c) = �(�, �), comparing coefficients in (3.1) and (3.2) gives

dn = (2�)	+1Id,n(�̂), n ∈ N0. (3.3)
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We, therefore, have proved the following relation between the coefficientsdn of the zonal
series expansion of� and the integralsId,n(�̂).

Proposition 1. Let� : R+ → R be a function such that its inverse Fourier–Bessel trans-
form exists,and	 = d−2

2 . Further assume the integrals

Id,n(�̂) =
∫ ∞

0
J 2
	+n

(t) �̂(t) t dt (3.4)

exist for alln ∈ N0,wherê� denotes the Fourier–Bessel transform(2.3)of�. Let� be the
zonal function defined by

�
(
�, �

) = �(

√
2 − 2�t�), �, � ∈ Sd−1.

Then the coefficientsdn in the series expansion(1.2)of� are given by

dn = (2�)	+1 Id,n(�̂), n ∈ N0. (3.5)

Proposition 1 appeared in a similar form in[16, Theorem 4.1] but the proof given there
does not use Gegenbauer’s addition theorem (2.9). However, the appearance of the addition
theorem has a deeper structural reason coming from the relation between the two geomet-
ric settings involved here. The latter are closely related to the Bessel functions and the
Gegenbauer polynomials, respectively. We cannot go into the details of this connection,
here. The interested reader is referred to [10, Chapter IV] and especially to the work by
Flensted-Jensen and Koornwinder [6].

To analyze the behavior ofId,n(�̂) with respect ton we choose� > 0 and decompose
the integral

Id,n(�̂) =
∫ �

0
J 2
	+n

(t)�̂(t)t dt +
∫ ∞

�
J 2
	+n

(t)�̂(t)t dt. (3.6)

From the asymptotic expansion of the Bessel functions (cf.[1, (4.8.5)])

J�(t) ∼
√

2

�t
cos

(
t − ��

2
− �

4

)
+ O

(
1

t

)
(3.7)

for larget, the second integral reads, with� > 0 sufficiently large,∫ ∞

�
J 2
	+n

(t)�̂(t)t dt ∼ 2

�

∫ ∞

�
�̂(t) cos2

(
t − (n + 	)�

2
− �

4

)
dt + O

(
1

�

)
.

(3.8)

Setting� = t − 	
2� − �

4 , consider the product

cos
(
� − �

2
n
)

cos
(
� − �

2
n
)
.

If n is even, cos
(
� − �

2n
) = ± cos�, and ifn is odd, cos

(
� − �

2n
) = ∓ sin�. Therefore,

the integrand in (3.8) is independent ofn, assuminĝ� is such that the integral exists.
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It remains to find an asymptotic expansion inn for the first integral in (3.6). Since the
decay of coefficients (3.3) for largen is dominated by the behavior of integral (3.4) close
to the origin, we can use the assumption on the behavior of the Fourier transform of� as
given in Conjecture C, fork = 0, to estimate the integral.

From [1, Ex.4.15] we have for 2� + 1 > � > −1∫ ∞

0
x−�J 2

� (x) dx =
�(�)�

(
� + 1−�

2

)
2��2

(
�+1

2

)
�
(
� + �+1

2

) .
This is a special case of Gauss’ summation formula for a hypergeometric2F1-series applied
to an integral of Sonine–Schaftheitlin (cf.[1, Chapter 4] for details).

Using �(�+�)
�(�+�) = O(��−�) for � → ∞, we have

∫ ∞

0
x−�J 2

� (x) dx =
�(�)�

(
� + 1−�

2

)
2��2

(
�+1

2

)
�
(
� + �+1

2

) = O(�−�) (3.9)

for large�, provided 2� + 1 > � > −1.
Since the second integral in (3.6) is independent ofn, and we are interested in the asymp-

totic behavior of the coefficientsdn for largen, only, we can replace the function̂�(t) in
the integral (3.4) byt−� assuming that̂�(t) = O(t−�) for t → 0. But we have to make sure
that the integral (3.4) exists. From the asymptotic behavior of the Bessel functions (3.7) and
the series representation (2.2), respectively, we have

J�(t) = O(t�), ast → 0,

J�(t) = O
(
t
− 1

2

)
, ast → ∞.

Therefore, the integral exists if 2� + 1 > � > −1. Setting� = � − 1 and� = 	 + n the
condition readsd +2n > � > 0. This inequality has to be satisfied for alln ∈ N, therefore,
d > � > 0. We thus proved the following result:

Theorem 2. If the generalized Fourier–Bessel transform̂� of a positive definite radial
function� exists,and for some0 < � < d

�̂(t) = O(t−�), as t → 0,

then the coefficientsdn in the zonal series expansion

�(�, �) = �(

√
2 − 2�t�) =

∞∑
n=0

dn

cn,k∑
k=1

Sn,k(�)Sn,k(�), �, � ∈ Sd−1,

satisfy

dn = O(n−�+1), asn → ∞.

The condition� < d in Theorem 2 does not really mean a restriction. From the asymptotic
behavior of the Bessel function close to zero and the existence of the integral (2.3) we
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conclude that̂�(t) cannot grow faster thant2	+2 = td as t → 0. Therefore, the upper
bound� < d is naturally given by the existence of the Fourier–Bessel transform.

4. Conditionally positive definite functions

We now want to extend the result in Theorem 2 to conditionally positive definite functions.
Again, let� ∈ L1

loc(R
d) be a function of polynomial growth.� is a conditionally positive

definite generalized function of orderk on S(Rd) if it can be represented as (cf.[8, II
4.4(25)])∫

R
�(x)�(x) dx =

∫
R0\{0}

�̂(v) − �(v)
2k−1∑
|n|=0

�̂(n)(0)

n! vk

 d
(v)

+
2k∑

|n|=0

�̂(n)(0)

n! an, (4.1)

where
 is a positive tempered measure such that
∫

0<|v|<1 |v|2k d
(v) < ∞. The function

� ∈ S(Rd) has to be chosen such that�(·) − 1 has a zero of order 2k + 1 at the origin, and
ak are certain coefficients depending on� and� (for further details, see[8]). Applying the
Fourier–Bessel transform for conditionally positive definite radial functions of orderk to
this representation, we derive the expression

�(�) = k	

∫ ∞

0

(
J	(�t) − �(t)

k−1∑
l=0

(−1)l(�t)2l

4l�(	 + l + 1)

)
t2	+1 d
(t)

+
k−1∑
l=0

(−1)l

4l�(	 + l + 1)
al�2l . (4.2)

The measure
 now denotes a positive tempered measure onR+ satisfying∫ 1

0
t2k d
(t) < ∞. (4.3)

Similar representations for conditionally positive definite functions have been given in
[13,9]. For our purposes it is not necessary to specify the function� and the coefficientsak

explicitly.
To proceed in the same way as for the casek = 0 we need the expansion of the kernel

of this representation in terms of Gegenbauer polynomials. Observe, that the second term
of sum (4.2) is a polynomial of degree less or equal 2k − 2. Since we are interested in
the behavior of the coefficientsdn for largen, we can, without loss of generality, alter the
function� by adding a polynomial to make this term disappear. For the integral term we
use a similar argumentation. The function

J	(�t) − �(t)
k−1∑
l=0

(−1)l(�t)2l

4l�(	 + l + 1)
, �, t ∈ R+, (4.4)
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differs fromJ	 by a polynomial of degree at most 2k − 2 as function of�. Since the coeffi-
cients in the Gegenbauer expansion of a function are unique and the space of polynomials
decomposes into a direct sum of spaces of polynomials of fixed degree, the Gegenbauer
coefficients of the function (4.4) equal

4	�(	)�(	 + 1)(	 + n)
J	+n(at)

(at)	

J	+n(bt)

(bt)	

for n�k, wherea, b and� are the lengths of the sides of a triangle. Again, we ignore the
lower order coefficients. We can, therefore, use the same expansion as in the casek = 0.
Thus, we have to analyze the integral

Id,n(�̂) =
∫ ∞

0
J 2
	+n

(t)�̂(t) t dt for n�k. (4.5)

We can again use (3.9) to estimate the behavior of the coefficientsdn for largen.

Theorem 3.If for some0 < � < d the generalized Fourier transform of a radial function
� which is conditionally positive definite of orderk ∈ N0 satisfies

�̂(t) = O(t−2k−�), as t → 0,

then the coefficientsdn in the zonal series expansion

�(�, �) = �(

√
2 − 2�t�) =

∞∑
n=0

dn

cn,k∑
k=1

Sn,k(�)Sn,k(�), �, � ∈ Sd−1,

satisfy

dn = O(n−2k−�+1), asn → ∞.

From condition (4.3) on the measure
 we can conclude thatd
(t) = �̂(t) dt can have
a singularity of order 2k at the origin. This fact is implicitly stated in the assumption on�̂.
The condition for estimate (3.9) now reads 2	 + 2n + 1 > 2k + � + 1 > −1. Sincen�k,
the inequalities are satisfied for 0< � < d. Again, the upper bound does not really mean a
severe restriction.

5. Remarks and open questions

To motivate the discussion concerning a possible relation between the function�̂ and
the Gegenbauer coefficientsdn based on smoothness of the function�, let us briefly sketch
the background. Starting with a generalized function� on R, we can define its Fourier
transform̂� in the usual way. Assuming that for some� ∈ N, the inverse Fourier transform

of the function�̂(�) exists, it is well-known that

�̂(�)(v) = (iv)��̂(v), v ∈ R. (5.1)
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Putting this relation into a proper context, gives an interpretation of smoothness of� derived
from its Fourier transform.

Let us now analyze this relation for the case where� : Rd → R has certain symmetries.
The groupGLd of invertibled×d matrices acts onRd via linear transformations. Likewise,
it naturally acts on functions onRd by settingf ◦ A(x) = f (Ax), x ∈ Rd , A ∈ GLd .
Using this concept, symmetry can be interpreted as invariance with respect to the action of
a subgroupK�GLd , i.e.,f (Ax) = f (x) for all A ∈ K. For example, if� is radial, then

�(Ax) = �(x) for all A ∈ SOd.

We can then identify the function� with a function� which is defined on the set of
equivalence classes, i.e., the orbit space(Rd)K of the group action.(Rd)K can be identified
with a certain subset ofRd and� with a function� on (Rd)K . In the above example,
(Rd)SOd = R+ and� is identified with� by means of�(x) = �(|x|), x ∈ Rd . With
this relation in mind, we can ask for relations between differentiability properties of the
functions� and�.

For radial functions there is a one-to-one correspondence. By a theorem of Ball[2],
� ∈ C�(Rd) if and only if � ∈ C�(R), where��0, and� is extended to an even function
onR. Therefore, the notion of smoothness onRd induced by the classical derivative carries
over to smoothness onR, using the classical derivative onR, and the Fourier transform
reflects these connections. Since Ball assumes continuity over all ofRd generalized Fourier
transforms are ruled out. Passing to generalized Fourier transforms for radial functions, we
can allow a singularity at the origin (cf. [4]). As shown by the above analysis, this singularity
determines the behavior of the Gegenbauer coefficients.

The same question turns out to be more complicated for zonal functions on the sphere.
First, we have to identify a zonal function� on Sd−1 as the restriction of an invariant
function onRd onto the orbit space of a group action. Let�+

d be the subgroup ofGLd

spanned by rotations which fix one of the coordinate axes, thedth, say, and by non-negative
multiples of the identity matrix. Note that both types of generators can be identified with a
subgroup ofGLd . If a function� on Rd is invariant under scaling the components of its
argument, it is uniquely defined by the values on a sphere of arbitrary radius. Assuming
further that� is invariant under rotations around thed-axis,� can be identified with a zonal
function � on the sphere. On the other hand, every zonal function on the sphere can be
extended to a function� on Rd defining�(x) = �(x/|x|, e1) for all x ∈ Rd , wheree1
denotes the first standard unit vector inRd .

The question of differentiability is much more involved here. We are not aware of a result
comparable to the one by Ball for this setting. Nevertheless, there are relations between the
Gegenbauer coefficients of� and the coefficients of its derivatives.

Assume that�(�, �) is a zonal function onSd−1 with zonal series expansion

�(t) =
∞∑
n=0

dnC
	
n(t), t = cos(�t�), �, � ∈ Sd−1.

Assume further, that� is �-times differentiable considered as an even function on[−1,1],
and letd(�)

n denote the Gegenbauer coefficients of the zonal series representation of�(�).
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The relation between the coefficientsdn andd
(�)
n has been studied by several authors. In

[5] for instance, one finds

d(�)
n = 2�(n + 	)�(n + 2	)

�(�)�(n + 1)

×
∞∑
j=1

(j)�−1
�(n + j + � + 	 − 1)�(n + 2j + � − 1)

�(n + j + 	)�(n + 2j + � + 2	 − 2)
dn+2j+�−2.

From this one can obtain the rather crude estimate

d(�)
n = O(n�+�), asn → ∞,

assuming thatdn = O(n�), as ntends to infinity. Thus, smoothness of even extension of
the function on[−1,1] corresponds to a certain decay of the Fourier coefficients asn tends
to infinity.

It is a challenging problem to give a full explanation for the relation in Theorems 2 and 3.
There are two questions which are linked together. First, what is the correct interpretation
of smoothness for functions onR+ andSd−1, respectively, such that the heuristic argument
of smoothness corresponds to decay of the Fourier transform, can be put into a rigorous
framework. Second, how do the assumingly different concepts of smoothness link together
using the common interpretation that the functions under consideration are restrictions of
K-invariant functions onRd to the orbit space(Rd)K .
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