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Abstract

Since radial positive definite functions B remain positive definite when restricted to the sphere, it
is natural to ask for properties of the zonal series expansion of such functions which relate to properties
of the Fourier—Bessel transform of the radial function. We show that the decay of the Gegenbauer
coefficients is determined by the behavior of the Fourier—Bessel transform at the origin.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Approximating functions by linear combinations of translates of a single basis func-
tion is a widely used method in several branches of mathematics. Methods of this kind
areradial basis function methods approximation theory ankriging methodsn mul-
tivariate statistics. There is a large literature on the subject in both areas of mathematics
(cf. [3,19], and the references therein). Given a functipn R — R and dataX =
{(X1, f1), ..., Xn, fn)} C R? x R, the basic idea of radial basis function interpolation is
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to assume the value, . .., fy to be point evaluations of an unknown functign R? —
R, and to recovef from a linear combination of the type

N
spx() = Y ajpy—x;),  yeR.
j=1

Since thebasis functiong(| - |) depends on the norm of the argument only, it is called
radial. A natural class of suitable basis functions is the claspasitive definite radial
functions. These are continuous functigns R¢ — R, such that for all finite sets of points

X1, ..., %X, € R? and arbitrary coefficientsy, ..., ¢, € C the inequality
n n
> Ead(x; —x) =0 (1.1)
j=1lk=1

holds true. Note that the common definition of positive definite functions does in general not
include continuity of the function. But in the context of radial basis function interpolation
this is a reasonable assumption.

There is an analogous concept for radial basis functions on the unit spfieten R¢.
We then assume the basis functigrio depend on the geodesic distance of two points on
the sphere, only, and define positive definiteness in an analog manner. One can show (cf.
[18, (1.3)]) that these functions can be representedzasal series,

o0 Cn,d
YEm =Y dy Y Suk(@OSkn,  &ne ST (1.2)
n=0 k=1

where{S, r : 1<k <c, 4} denotes a basis of the space of spherical harmonics (cf. (2.11),
below).

Many results for radial basis functions &{ have their counterparts on the sphere (cf.
for example [7]). One difficulty with the so-callembnal basis functiompproach is to find
suitable basis functions on the sphere. Since the restriction of a positive definite function
onR? to the sphere is positive definite &f 2, it is natural to ask which properties of the
radial basis functions can be naturally transferred to the sphere.

Comparing Fourier transform and zonal series expansion for several examples of known
basis functions (see e.g., [11]). Levesley and Hubbert [12] came up with the following
conjecture.

Conjecture A. Let ¢ be radial onR? such that for somé e N the function(—1)*¢™* is
completely monotone a®, oo). Let further the generalized Fourier transform ¢fhave
polynomial decayi.e.,

(1) = 0@
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for somex > 0, and

Cn,d

YEN = dn Y Sus(@OSux(n).  EneSiTh

n=0 k=1

denotes the zonal series expansion of the restrictiah tofthe spherei,e.,

wiEn = ¢ <\/ 2— 25'17> , & nesSit.

Then the Fourier coefficientd,,} have an analog decay rate. To be precise,

d, = O(n~? Y, asn — co.

The aim of the present paper is to analyze the conjecture in some detail and to give a proof
of a clarified version of it. The basic idea is to use properties of the underlying systems of
special functions to bridge the gap between the Fourier transfoend the zonal series
coefficientsd,,.

To keep the paper self-contained, we summarize the important definitions and properties
in the next paragraph and discuss several aspects of the conjecture. At the end we will put
the conjecture into a form which can be proved. We will give the proof for the special case
that ¢ is positive definite in Section 3. Section 4 then deals with the general case. The
last section finally gives some remarks on the underlying concepts, trying to provide some
understanding of the concept of smoothness and radial/zonal functions.

2. Prerequisites

Before analyzing the conjecture let us collect some basic facts on Fourier transforms and
special functions. By (R?) we denote the Schwarz spacel#fh i.e., the space of functions
@ € C>(RY) with sup _ga X" 0" @(x)| < oo for all n,m € N§. Afunctiong € LL (R)
is called of polynomial growth if there is @ne Ng suchthatg(x)| = O(|x|¢) for [x| — oo.
Such functions can be considered as generalized functio§s&) in the usual way. The
generalized Fourier transforrfor such functions is then defined as

fR P00 dx = /R | $O0PO0 dx (2.1)

forall ¢ € S(RY).
Recall, theBessel functiomwf the first kind and of order > —% is defined by its power
series

1 2\Y — (—1) 7\ 2
M@ = FoD (E) ];)k!l“(v—i-k—i-l) (E) . 2eC (2.2)
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Since it is sometimes more convenient, let us also introduce a second commonly used
notation:

T.@) = T+ 1) (%) "1@, zeC.

The Fourier-Bessel transform of a radial function®his defined as (cf17])

e~

d)O(t) = kﬂ. /oo ¢O(r)t7).(r[)r2}y+ldr9 re R+7 (23)
0

wherek; = (2*I'(/+1))"1. Here and for the rest of the papetienotes the fixed parameter
A= %. The constant; is chosen such that the transform is self-inverse@@(z) =
¢o(r), for suitable functionspg. The functiong, thereby denotes the radial functign
considered as a function on the positive real line.

In case of a radial functiopp Eq. (2.1) reads

k; / h boM o) dr =k, / h o) P(ryr¥*ar (2.9
0 0

forall ¢ € S(R4).
Leto € Lﬁ)c([R?d) be a function of polynomial growth. Thefhis ageneralized positive

definite functioron S(RY) if and only if it can be represented as

/Rd P)Pp(x) dx = fRd P du(x), (2.5)

wherep is a positive tempered measure, i.e., a positive measure which additionally satisfies
/ A+ XD duo) < oo
R{

for somep >0 (see, e.g[8]). Using (2.5) and the Fourier—Bessel transform (2.3), we obtain
the following representation for a radial positive definite function:

$Po(r) = k; /OO T r) e+ dur), reRy, (2.6)
0

wherey is a positive tempered measure@n. Since we are dealing with radial functions
only, we willidentify the radial functions oR‘ with their counterparts oR., , thus, skipping
the subscript. Likewise, the notatighhas to be interpreted accordingly.

Let us finally recall some important facts about Gegenbauer polynomials and their con-
nection to Bessel functions. Tli&egenbauer polynomiatf degreer € N with parameter
v > 0 can be defined using their generating function

o0
(1—2r cosO+r%)™" = > r"C)(cosh), 0 € [0, ). (2.7)
n=0
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Gegenbauer polynomials are orthogonal on the intgfat] with respect to the measure
sir®’ 0d0 and are normalized such that

(2v)n
n!

|C)(cost)| < C'(1) = 0 [0, 7. (2.8)

There is an important connection between Gegenbauer polynomials and Bessel functions
of orderv > —%, known asGegenbauer’s addition theorefor Bessel functions:

Jvin(a) Jyin(b)
a’ bY

AP S w4n)

¢
n=0

C, (cos0), (2.9)

wherea, b, ¢ are the lengths of the sides of a triangle, @rid the angle between the sides
of lengtha andb, respectively.

In [18] Schoenberg proved that a functibon S?~1 is positive definite if and only if
has a Gegenbauer expansion

fE&@n =Y aCl(cosh),  &nesi (2.10)
n=0

with non-negative coefficients, € R, n € No, and0 = arccosé's.

To explain the connection between Gegenbauer polynomials and functions on the sphere,
we have to introduce spherical harmonics. For further details on spherical harmonics the
reader is referred to the monografis].

The spaceC(S?~1) of real-valued continuous functions on the spherétfhcan be
decomposed into the direct sum of spaces of harmonic polynomials on the splikre in
variables, i.e.,

o
cs'™h = Py
n=0

There is an inner product af(S?~1) given by

o = [ FOs@d0o.

wheredw (&) denotes the surface measure on the surface of the unit sphere and

w0y = f do (&) = 2n§F<‘—1)
I¢=1 2

its total area.
The spacé{); of spherical harmonics of degreeimd variables has dimension

 (ntd-2 ntd—3) L (n+d—3)
C”*d_( n )+( n—1 )_(2"+d 2 d =)

and there can be chosen an orthogonal bisis j = 1, ..., ¢4, in H; such that

(Sn.j» Ski) = Onkj1. (2.11)
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Given such an orthogonal basis the basis elements satisfgicgition formula

Cn,d J ozt

cnd Cy(&m)
Z Sn, '(f)Sn, (7]) = - n/l . (212)
- w¢ Ci(1)

Letting d tend to 2 this formula reduces to the classical addition formula for the cosine
function.

The addition formula is a fundamental relation in the context of functions on the sphere,
since it allows to represembnal functions, i.e., functions depending®n, &, 1 € S92,
only, in terms of Gegenbauer expansions. There is a group theoretic explanation for the
connection between spherical harmonics and Gegenbauer polynomifl€]&br details).

We do not want to unfold the theory in the context of this paper, but let us briefly mention
that from the group theory point of view Gegenbauer expansions are a natural tool to deal
with zonal functions on the sphere.

To relate radial functions oR“ with zonal functions or5?~1, recall that thegeodesic
distanceof two points onS?~! is defined asi(¢, ) = arccos®’n, &, € S¥7L. The
Euclidean distance betwegnandy then is|¢ — | = /2 — 2&'y. Thus, if ¢ is positive
definite and radial oft?,

vi&n = ¢ (\/ 2— 25”7) , & nesi,

is positive definite and zonal o&? L.

To discuss the aforementioned conjecture in detail, let us first broaden the concept of
positive definite functions to enlarge the class of suitable basis functions. A radial function
¢ - RY - R is said to beconditionally positive definite of order k, if the sum (1.1) is
non-negative for all finite sets of poinis, ..., x, in R? and all coefficients:, ..., ¢,
satisfying

n
Z cip(x;) =0
j=1

for all polynomialsp on RY of degree less thak Clearly, positive definite functions are
conditionally positive definite of order 0. Micche]li4] gave a sufficient condition to ensure
that a function is conditionally positive definite on all spaB¥sd > 1, which later has been
shown to be necessary by Guo et al. [9]. For fixerl1 characterizations of conditionally
positive definite functions can be found, for example, in the book of Gel'fand and Vilenkin
[8, Chapter II].

To state Micchelli's condition, we need the following definition. A continuous function
¢ on [0, co) is said to becompletely monotonen (0, co), if f € C*°(0, co) and for all
m € Ng we have(—1)" £ (1) >0, for allt € (0, o).

Theorem B. Let ¢ be continuous of1fi0, co) and (—1)"4)(") be completely monotone on
(0, 00). Then¢ is radial and conditionally positive definite of order k on all spaéks
d>1.
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Using Theorem B, we can conclude that Levesley and Hubbert obviously had condition-
ally positive definite functions in mind when they formulated their conjecture. We can thus
alter its formulation by assuming that the functipiis conditionally positive definite oR¢
forall 4 > 1. We will use a representation of conditionally positive definite function&®on
for fixed dimensiord. Therefore, we state the conjecture for the larger class of conditionally
positive definite radial functions for fixed dimension. N

The formulation of the conjecture i12] assumes the functiog to have polynomial
decay which usually has to be understood as a condition on the decay of the function as the
argument tends too. But, as we will show below, the behavior of the Fourier transform
¢ for large arguments does not influence the decay of the coefficigrasn — oco. At
a first glance, this seems to be surprising. From the heuristic argument that smoothness
of the function¢ corresponds to decay of its Fourier transform for large arguments, one
might conclude that sinceé andys could in some way be identified, we should expect a
certain decay of the Fourier transformypfi.e., its zonal series expansion, given a smooth
function ¢.

In a certain way this argument is correct, although it is a priori not clear in what sense
smoothness of the functigh has to be understood. But due to the restriction to the sphere,
¢ andy coincide on the interval0, 1], only. On the other hand, any inference on the
smoothness ofy out of its Fourier transform is of global nature, i.e., takes the whole
positive real axis into account. Since we can scale the sphere by an arbitraryefac@r
the only region where we can expect any influence of the behavigrarf the decay of
the coefficientsi,, is close to the origin. Thus, we have to further modify the conjecture,
assuming a certain behavior of the functiprlose to the origin.

Dealing with generalized functions and their Fourier transforms indeed allows a
singularity o@ at the origin. Crum [4], for example, showed that the Fourier transform of
a measurable positive definite radial function is continuou&pno) and can at most have
a singularity at the end points.

Summarizing the above arguments, we end up with the following clarified version of the
conjecture:

Conjecture C. Let ¢ be conditionally positive definite of order k,e Ng, and radial on
R?. Assume further that the generalized Fourier transformp @ists and satisfies

b(t) = O, ast —» 0

for somey > 0. If

o0 Cn,d
YEm =Y dy Y Sux(@OSaln,  &ne ST
n=0 k=1

denotes the zonal series expansion of the restrictiah tofthe spherei,e.,

Y& n = ¢ (\/2——thf7> , & nesi,
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then the Fourier coefficientgl, },cn, have an analog decay rate. To be precise,

d, = O (n_Zk_VH) , asn — oo.

We will prove the casé = 0 first, i.e., for positive definite functiong. The general case
then follows in Section 4.

3. Gegenbauer expansion of a radial function

Since forx,y € R?, a = |x|, b = |y|, andc = |x — y| form a triangle we can use
the addition theorem (2.9) to obtain a Gegenbauer expansion for the kernel of the inverse
Fourier—Bessel transform.

Let ¢ be a function oiiR ;. such thatits inverse Fourier—Bessel transform exists. Following
(2.3) we can write

$(c) =c* / - T (ct)p()e* L dt
0

) - L (Xy Jin(at) Jyin(bt) ~ 550
=2 F(/u)g (.4 n)C} (ab)fo T oy o)t gy,

Denoting the integral

a - Jiin J ”b
@ = [ LS S Gy

and/ly , (d)) tgl”l)@), we finally have

$(c) = 2'T'(A) Z() +m)I5%" ($)C}(cos ), (3.1)

n=0

whereab cos) = x'y for x,y € RY.
If [X| = |yl = 1 we have [x-Yy| = /2 — 2 cos6. Restricting the functio’W'(x, y) =

d(Ix —y]) to ST x S9~1 we, therefore, have a zonal functigiié, ) = ¢(v/2 — 2E7n),
for &, € SY71. According to (1.2) and (2.12) we obtain

Cn k

W& = Zd > Su k(&) Sux(n)

n= 0 k=1
dncn.a C/ 0 Il <
_Z Cdd C(fi’ls) ) - (M Z( + 2)dyChcos0). (3.2)

Sinceg(c) = Y(&, 1), comparing coefficients in (3.1) and (3.2) gives

dy = @y .($).  neNo. (3.3)
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We, therefore, have proved the following relation between the coefficigrathe zonal
series expansion af and the integralg; ,,(¢).

Proposition 1. Let ¢ : R — R be a function such that its inverse Fourier—Bessel trans-
form existsand A = "7‘2 Further assume the integrals

Lin (@) = /O 720y dr (3.4)

exist for alln € N, Wherefﬁ denotes the Fourier—Bessel transfof2n3) of ¢. Letys be the
zonal function defined by

y(En) = o228y,  Enesih

Then the coefficients, in the series expansidil.2) of yy are given by

dy = @ 1y,($).,  neNo. (3.5)

Proposition 1 appeared in a similar form[it6, Theorem 4.1] but the proof given there
does not use Gegenbauer’s addition theorem (2.9). However, the appearance of the addition
theorem has a deeper structural reason coming from the relation between the two geomet-
ric settings involved here. The latter are closely related to the Bessel functions and the
Gegenbauer polynomials, respectively. We cannot go into the details of this connection,
here. The interested reader is referred to [10, Chapter V] and especially to the work by
Flensted-Jensen and Koornwinder [6].

To analyze the behavior df; , (¢) with respect ton we chooser > 0 and decompose
the integral

Lin(@) = /O T2, (dntdt + / T2, ()t dt. (3.6)

From the asymptotic expansion of the Bessel functiond1¢{4.8.5)])

2 VToT 1
Jy(t) ~ \/;cos<t -5 4_1> +0 <?) 3.7)

for larget, the second integral reads, with> 0 sufficiently large,

/oo J?+ (t):ﬁ(t)tdtwg /OOIQ/;(I)COSZ <t— M — E) dt + O (E)
. A+n T J, 2 1 .

(3.8)

Settingo =1 — %n — 7. consider the product

T T
cos(oc — §n> cos(oc — En) .
If nis even, cogx — 5n) = £ cosa, and ifnis odd, cogo — 3n) = Fsina. Therefore,
the integrand in (3.8) is independentrgfassumingp is such that the integral exists.
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It remains to find an asymptotic expansionnifior the first integral in (3.6). Since the
decay of coefficients (3.3) for largeis dominated by the behavior of integral (3.4) close
to the origin, we can use the assumption on the behavior of the Fourier transfgrasof
given in Conjecture C, fok = 0, to estimate the integral.

From [1, Ex.4.15] we have fon2+ 1 > f > —1

rpr (v n l—;ﬂ)
1 1\’
2612 (ﬁ%) r(v+ ”%)
This is a special case of Gauss’ summation formula for a hypergeomEtrseries applied

to an integral of Sonine—Schaftheitlin (§1, Chapter 4] for details).

Using ?ELiZi = O ") for v — oo, we have

o0
/ x_ﬁj‘,z(x) dx =
0

rgpr (v+ L)
262 (/%1) r (v + "—31)

for largev, provided 2 +1 > f > —1.

Since the second integral in (3.6) is independemt, @ind we are interested in the asymp-
totic behavior of the coefficients, for largen, only, we can replace the functigh(z) in
the integral (3.4) by 7 assuming thap(r) = O(+~") fort+ — 0. But we have to make sure
that the integral (3.4) exists. From the asymptotic behavior of the Bessel functions (3.7) and
the series representation (2.2), respectively, we have

Jy@®)=0t"), ast— 0,
1
J, ) =0 (t_?> , ast — oo.

= o h (3.9)

o0
/ x_ﬁfvz(x) dx =
0

Therefore, the integral exists iv2+ 1 > f > —1. Settingf = y — 1 andv = A + n the
condition read€ +2n > y > 0. This inequality has to be satisfied forale N, therefore,
d > v > 0. We thus proved the following result:

Theorem 2. If the generalized Fourier—Bessel transfor@nof a positive definite radial
function¢ exists,and for somé <y < d

’g/;(t) = O™, ast — 0,

then the coefficientd, in the zonal series expansion

Cn,k

lﬂ(f’ 7]) = QS(\/ 2— 25’7) = Zdn Z Sn,k(é)sn,k(n)a év ne Sd?l»
n=0 k=1

satisfy

d, = O™, asn — oo.

The conditiony < d in Theorem 2 does not really mean a restriction. From the asymptotic
behavior of the Bessel function close to zero and the existence of the integral (2.3) we
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conclude tha@(z) cannot grow faster thart*t2 = ¢ as: — 0. Therefore, the upper
boundy < d is naturally given by the existence of the Fourier—Bessel transform.

4. Conditionally positive definite functions

We now wantto extend the resultin Theorem 2 to conditionally positive definite functions.
Again, let¢ € Lloc(Rd) be a function of polynomial growthp is a conditionally positive
definite generalized function of ord&ron S(R?) if it can be represented as (48, Il
4.4(25)])

~ 1a<">(0> )
/ POIP(X) dx = / PV —aw) Y Ve duwv)
R RO\{O} |n|=0 '
2k ~n) 0
+ Y2 n!( ) . (4.2)

|n|=0

wherey is a positive tempered measure such %@Fv\d Iv|% du(v) < oo. The function

% € S(R?) has to be chosen such thdt) — 1 has a zero of ordek2+ 1 at the origin, and
ay are certain coefficients depending ¢rando (for further details, sef8]). Applying the
Fourier—Bessel transform for conditionally positive definite radial functions of deder
this representation, we derive the expression

k—1
> (—1)(pn)? ) 2141
d)(p):kz/ (Jz(pt)—a(t) T | du®
§4lr(ﬂb+l+1)

-1 2
* Z41F(/L+l+1) P (4.2)

The measur@ now denotes a positive tempered measur&aqrsatisfying

1
/ 1 du(t) < oo. (4.3)
0

Similar representations for conditionally positive definite functions have been given in
[13,9]. For our purposes it is not necessary to specify the funetimd the coefficientsy
explicitly.

To proceed in the same way as for the case 0 we need the expansion of the kernel
of this representation in terms of Gegenbauer polynomials. Observe, that the second term
of sum (4.2) is a polynomial of degree less or equal22. Since we are interested in
the behavior of the coefficients, for largen, we can, without loss of generality, alter the
function ¢ by adding a polynomial to make this term disappear. For the integral term we
use a similar argumentation. The function

k—1
_11 2l
Tipn) — a3 DD

WD, eR 4.4
LATGri+y P 44)
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differs from 7, by a polynomial of degree at most 2 2 as function of. Since the coeffi-

cients in the Gegenbauer expansion of a function are unique and the space of polynomials
decomposes into a direct sum of spaces of polynomials of fixed degree, the Gegenbauer
coefficients of the function (4.4) equal

J2+n (at) J/l+n(bt)

AT+ 1)+ n) T )]

for n >k, wherea, b andp are the lengths of the sides of a triangle. Again, we ignore the
lower order coefficients. We can, therefore, use the same expansion as in thhecdse
Thus, we have to analyze the integral

o~ 0o —~~
Lo (P) = / JZ 0@ tdt for n>k. (4.5)
0
We can again use (3.9) to estimate the behavior of the coefficigfits largen.

Theorem 3.If for some0 < y < d the generalized Fourier transform of a radial function
¢ which is conditionally positive definite of ordere Ny satisfies

b)) = O, ast — 0,

then the coefficientd, in the zonal series expansion

[ee] Cn,k
‘ﬁ(é’ 77) = ¢(V 2— 25’7) = Zdn Z Sn,k(f_)sn,k(n)7 5’ ne Sd_l»
n=0 k=1
satisfy
d, = O(n=%1+1y, asn — oo.

From condition (4.3) on the measuyteve can conclude thatu(r) = $(t) dt can have
a singularity of order R at the origin. This fact is implicitly stated in the assumptiongon
The condition for estimate (3.9) now reads22n + 1 > 2k + y + 1 > —1. Sincen >k,
the inequalities are satisfied for©y < d. Again, the upper bound does not really mean a
severe restriction.

5. Remarks and open questions

To motivate the discussion concerning a possible relation between the fuancﬁnd
the Gegenbauer coefficients based on smoothness of the functibret us briefly sketch
the background. Starting with a generalized functimon R, we can define its Fourier
transform® in the usual way. Assuming that for some= N, the inverse Fourier transform

of the function®™ exists, it is well-known that

PO = (VBV), VveR. (5.1)
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Putting this relation into a proper context, gives an interpretation of smoothnésieoived
from its Fourier transform.
Let us now analyze this relation for the case whereR? — R has certain symmetries.
The groupG L, of invertibled x d matrices acts oR¢ via linear transformations. Likewise,
it naturally acts on functions oR? by setting f o A(X) = f(AX), x € R?, A € GL,.
Using this concept, symmetry can be interpreted as invariance with respect to the action of
a subgroupk <GLy, i.e., f(AX) = f(x) forall A € K. For example, if is radial, then

®(AX) = ®(x)  forall A € SO,.

We can then identify the functio® with a function ¢ which is defined on the set of
equivalence classes, i.e., the orbit spd&®X of the group action(R?)X can be identified
with a certain subset dR? and @ with a function¢ on (RHX . In the above example,
(R")S% = R, and® is identified with¢ by means of®(x) = $(|x|), x € RY. With

this relation in mind, we can ask for relations between differentiability properties of the
functions® and¢.

For radial functions there is a one-to-one correspondence. By a theorem d2Ball
@ € C*(R?) if and only if ¢ € C*(R), wherex >0, and¢ is extended to an even function
onR. Therefore, the notion of smoothnessi&hinduced by the classical derivative carries
over to smoothness dR, using the classical derivative d®, and the Fourier transform
reflects these connections. Since Ball assumes continuity overf&l géneralized Fourier
transforms are ruled out. Passing to generalized Fourier transforms for radial functions, we
can allow a singularity at the origin (cf. [4]). As shown by the above analysis, this singularity
determines the behavior of the Gegenbauer coefficients.

The same question turns out to be more complicated for zonal functions on the sphere.
First, we have to identify a zonal functioh on S?~* as the restriction of an invariant
function onR? onto the orbit space of a group action. LAa} be the subgroup of; L,
spanned by rotations which fix one of the coordinate axegltthesay, and by non-negative
multiples of the identity matrix. Note that both types of generators can be identified with a
subgroup ofG L. If a function® on R? is invariant under scaling the components of its
argument, it is uniquely defined by the values on a sphere of arbitrary radius. Assuming
further that® is invariant under rotations around ttkeaxis,® can be identified with a zonal
functiony on the sphere. On the other hand, every zonal function on the sphere can be
extended to a functio® on R? defining ®(x) = W (x/|x|, ey) for all x € RY, wheree;
denotes the first standard unit vectofifi.

The question of differentiability is much more involved here. We are not aware of a result
comparable to the one by Ball for this setting. Nevertheless, there are relations between the
Gegenbauer coefficients gfand the coefficients of its derivatives.

Assume that) (¢, 1) is a zonal function o5¢~* with zonal series expansion

o0
Y = Y d,CHr).  t=cos€y). &neSh
n=0

Assume further, thaf is x-times differentiable considered as an even functiofr-eh, 1],
and Ietd,E") denote the Gegenbauer coefficients of the zonal series representaﬁﬁﬁ.of
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The relation between the coefficienis andd,ﬁ") has been studied by several authors. In
[5] for instance, one finds

2%(n + )L (n + 20)
I'x)l'(n+1)
<3 (et T+ j+x+i-DIn+2j+x—1)
j=1

d® =

dpi2 it
T+ + I +2j fr+2i—2) "rate=2

From this one can obtain the rather crude estimate
d,g"') = Om*th, asn — oo,

assuming that, = O(n*), as ntends to infinity. Thus, smoothness of even extension of
the function or{—1, 1] corresponds to a certain decay of the Fourier coefficiemdesds
to infinity.

Itis a challenging problem to give a full explanation for the relation in Theorems 2 and 3.
There are two questions which are linked together. First, what is the correct interpretation
of smoothness for functions dh, andS?~1, respectively, such that the heuristic argument
of smoothness corresponds to decay of the Fourier transform, can be put into a rigorous
framework. Second, how do the assumingly different concepts of smoothness link together
using the common interpretation that the functions under consideration are restrictions of
K-invariant functions orit? to the orbit spaceR?)X .
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